CREB critically regulates action potential shape and duration in the adult mouse ventricle.
نویسندگان
چکیده
The cAMP response element binding protein (CREB) belongs to the CREB/cAMP response element binding modulator/activating transcription factor 1 family of cAMP-dependent transcription factors mediating a regulation of gene transcription in response to cAMP. Chronic stimulation of β-adrenergic receptors and the cAMP-dependent signal transduction pathway by elevated plasma catecholamines play a central role in the pathogenesis of heart failure. Ion channel remodeling, particularly a decreased transient outward current (I(to)), and subsequent action potential (AP) prolongation are hallmarks of the failing heart. Here, we studied the role of CREB for ion channel regulation in mice with a cardiomyocyte-specific knockout of CREB (CREB KO). APs of CREB KO cardiomyocytes were prolonged with increased AP duration at 50 and 70% repolarization and accompanied by a by 51% reduction of I(to) peak amplitude as detected in voltage-clamp measurements. We observed a 29% reduction of Kcnd2/Kv4.2 mRNA in CREB KO cardiomyocytes mice while the other I(to)-related channel subunits Kv4.3 and KChIP2 were not different between groups. Accordingly, Kv4.2 protein was reduced by 37% in CREB KO. However, we were not able to detect a direct regulation of Kv4.2 by CREB. The I(to)-dependent AP prolongation went along with an increase of I(Na) and a decrease of I(Ca,L) associated with an upregulation of Scn8a/Nav1.6 and downregulation of Cacna1c/Cav1.2 mRNA in CREB KO cardiomyocytes. Our results from mice with cardiomyocyte-specific inactivation of CREB definitively indicate that CREB critically regulates the AP shape and duration in the mouse ventricle, which might have an impact on ion channel remodeling in situations of altered cAMP-dependent signaling like heart failure.
منابع مشابه
miR-33-5p Regulates CREB to Induce Morphine State-dependent Memory in Rats: Interaction with µ Opioid Receptor
The aim of the present study was to examine the hypothesis that miR-33-5p attenuates morphine state-dependent (StD) memory via the µ opioid receptor by regulating cyclic AMP response element-binding protein (CREB). The effects of post-training morphine and morphine StD memory and their interaction with pre-test naloxone were evaluated using a single-trial inhibitory avoidance paradigm. Then, th...
متن کاملExperimental and theoretical ventricular electrograms and their relation to electrophysiological gradients in the adult rat heart.
The electrical activity of adult mouse and rat hearts has been analyzed extensively, often as a prerequisite for genetic engineering studies or for the development of rodent models of human diseases. Some aspects of the initiation and conduction of the cardiac action potential in rodents closely resemble those in large mammals. However, rodents have a much higher heart rate and their ventricula...
متن کاملCyclic AMP-induced p53 Destabilization is Independent of CREB in pre-B Acute Lymphoblastic Leukemia Cells
Elevated cAMP levels in B-cell precursor acute lymphoblastic leukemia (BCP-ALL) cells attenuate the doxorubicin-induced p53 accumulation and protect cells against apoptosis. cAMP responsive element binding protein (CREB) is a cAMP-stimulated transcription factor that regulates genes whose deregulated expression cooperatein oncogenesis. In the present study, we investigated the role of CREB on i...
متن کاملElectrophysiological study of amygdale-induced changes in the excitability of CA1 hippocampal pyramidal neurons in male adult rats
Introduction: Many studies have shown that amygdala kindling produces synaptic potentiation by induction of changes in the neuronal electrophysiological properties and inward currents both in epileptic focus and in the areas which are in connection with the epileptic focus and have important role in seizure development and progression such as hippocampal CA1 region. However, cellular mechani...
متن کاملMathematical model of the neonatal mouse ventricular action potential.
Therapies for heart disease are based largely on our understanding of the adult myocardium. The dramatic differences in action potential (AP) shape between neonatal and adult cardiac myocytes, however, indicate that a different set of molecular interactions in neonatal myocytes necessitates different treatment for newborns. Computational modeling is useful for synthesizing data to determine how...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 302 10 شماره
صفحات -
تاریخ انتشار 2012